Строение инсулина биохимия. Инсулин - самый молодой гормон

Инсулин – (от лат. insula – остров) – гормон пептидной природы, он образуется в бета-клетках островков Лангерганса поджелудочной железы. Молекула инсулина состоит из двух полипептидных цепей, которые включают 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь находится в A-цепи.

Первичная структура инсулина у разных биологических видов имеет некоторые различия, точно так же, как отличается его роль в регуляции обмена углеводов. Больше всего схож с человеческим инсулин свиньи, они отличаются одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина находится аланин, а в инсулине человека – треонин; бычий инсулин отличается на три аминокислотных остатка.

Цепи соединяются друг с другом посредством двух дисульфидных мостиков (получается, что каждый образован двумя атомами серы), а третий дисульфидный мостик выступает связующим звеном отдаленных друг от друга аминокислот А-цепи. Соединенные цепи немного изгибаются и сворачиваются в глобулярную структуру, именно такая конфигурация молекулы гормона важна для проявления его биологической активности.

Существенно влияет на обмен почти во всех тканях. По своей химической структуре данное соединение находится где-то между полипептидами и белками. Инсулин образуется в поджелудочной железе животных и человека. В бета-клетках поджелудочной железы инсулин образуется из предшественника - проинсулина, полипептида из 84 аминокислотных остатков, у которых не наблюдается грмональная активность. Инсулин – это специфическое средство, которому свойственно понижать сахар, также он регулирует углеводный обмен; влияет на усиление усвоения тканями глюкозы и помогает ей превратиться в гликоген, также облегчает проникновение глюкозы в клетки тканей. У инсулина наблюдается не только гипогликемическое влияние, он оказывает ряд других эффектов: влияет на повышение запасов гликогена в мышцах, оказывает стимулирующий эффект на синтез пептидов, снижает расход белка. В некоторых видах спорта данный препарат ценят благодаря тому, что у него наблюдается выраженный анаболический эффект.

Историческая справка

Главная функция инсулина состоит в обеспечении клеток организма важным энергетическим материалом – глюкозой.

В том случае, если наблюдается нехватка инсулина, клетки не имеют возможности усваивать глюкозу, идет процесс накопления в крови, а ткани и органы подвержены энергетическому голоданию. При нехватке инсулина может начать развиваться очень серьезное заболевание (сахарный диабет).

До начала XX в. больные сахарным диабетом умирали в детском или молодом возрасте, в связи с развитием осложнений, вызванных болезнью, почти никто не жил больше 5–7 лет после начала болезни.

О том, какую роль играет поджелудочная железа в развитии сахарного диабета, узнали только в конце XIX в. В 1869 г. в Берлине 22-летний Поль Лангерганс, будучи на то время студентом-медиком, проводил исследования с помощью микроскопа строения поджелудочной железы. Он заметил неизвестные клетки, которые создавали группы, равномерно распределенные по всей железе. Несмотря на это, функция этих клеток, которые потом назвали в честь студента островками Лангерганса, продолжала быть не изученной.

Некоторое время спустя Эрнст Лако выдвинул гипотезу о том, что поджелудочная железа участвует в процессах пищеварения. В 1889 г. немецкий физиолог Оскар Минковски попытался доказать, что данное утверждение не имеет ничего общего с реальностью. С этой целью он поставил эксперимент, в ходе которого удалил железу у здоровой собаки. Спустя пару дней после начала эксперимента помощник Минковски, который следил за состоянием лабораторных животных, заметил то, что на мочу подопытной собаки слеталось очень много мух.

Провели исследование мочи, в ходе которого было обнаружено, что собака, у которой отсутствует поджелудочная железа, вместе с мочой выделяет сахар. Это было первое наблюдение, свидетельствующее о том, что существует некая связь между работой поджелудочной железы и развитием сахарного диабета. В 1901 г. Евген Опи доказал, что сахарный диабет развивается вследствие нарушений в структуре поджелудочной железы (полным или частичным разрушением островков Лангерганса).

Первым человеком, выделившим инсулин и успешно применяющим его для лечения больных, стал канадский физиолог Фредерик Бантинг. Он пытался создать лекарство от диабета в связи с тем, что двое его друзей умерли от данной болезни. Еще до этого многие исследователи, которые поняли роль поджелудочной железы в развитии сахарного диабета, делали попытки выделить вещество, влияющее именно на уровень сахара крови. К сожалению, все попытки заканчивались неудачно.

Это было связано частично с тем, что ферменты поджелудочной железы (в основном трипсин) успевали хотя бы частично разложить белковые молекулы инсулина до того, как их удавалось выделить из экстракта тканей железы. В 1906 г. Георг Людвиг Зэльцер смог достичь определенного успеха в снижении уровня глюкозы в крови подопытных собак прибегая к помощи панкреатического экстракта, но ему не удалось продолжить свою работу. Скотт в 1911 г. в Чикагском университете работал с водным экстрактом поджелудочной железы, он заметил небольшое уменьшение гликозурии у подопытных животных. В связи с тем, что руководителя проекта не удалось убедить в важности проводимых исследований, их остановили.

Такого же эффекта достиг Израэль Кляйнер в 1919 г., он не смог закончить свою работу, так как началась Первая мировая война.

Схожую работу в 1921 г. опубликовал профессор физиологии Румынской школы медицины Никола Паулеско. Многие исследователи не только в Румынии полагают, что первооткрывателем инсулина был именно этот ученый. Несмотря на это, заслуга выделения инсулина, а также его успешного использования принадлежит именно Фредерику Бантингу.

Бантинг работал младшим преподавателем на кафедре анатомии и физиологии в канадском университете, его руководителем был профессор Джон Маклеод, которого в то время принимали за большого специалиста в вопросах, касающихся диабета. Бантинг пытался добиться атрофии поджелудочной железы прибегая к перевязке ее выводных протоков (каналов) на 6–8 недель, сохранив при этом островки Лангерганса неизмененными от воздействия ферментов поджелудочной железы, и получить чистый экстракт клеток этих островков.

Для проведения этого эксперимента необходима была лаборатория, помощники и подопытные собаки, этого всего у Бантинга не было.

За помощью он обратился к профессору Джону Маклеоду, который хорошо знал о всех прежних неудачах с получением гормонов поджелудочной железы. В связи с этим, он сначала отказал Бантингу. Несмотря на это, Бантинг продолжал упорствовать и весной 1921 г. снова попросил Маклеода дать разрешение поработать в лаборатории хотя бы два месяца. В связи с тем, что именно тогда Маклеод планировал поехать в Европу, соответственно, лаборатория была свободной, он дал свое согласие. В качестве помощника Бантингу дали студента 5-го курса Чарльза Беста, который хорошо разбирался в методах определения сахара в крови и моче.

Для того, чтобы провести эксперимент, требующий больших расходов, Бантинг продал почти все, что у него было.

Нескольким собакам перевязали протоки поджелудочной железы и стали дожидаться ее атрофии. 27 июля 1921 г. собаке, у которой отсутствовала поджелудочная железа, и которая находилась в прекоме, ввели экстракт атрофированной поджелудочной железы. Спустя несколько часов у собаки отмечалось снижение уровня сахара в крови и моче, исчез ацетон.

Затем экстракт поджелудочной железы ввели во второй раз, и она прожила еще 7 дней. Вполне вероятно, что удалось бы продлить жизнь собаки еще на какой-то время, но у исследователей закончился запас экстракта. Это было связано с тем, что получение инсулина из поджелудочных желез собак – очень трудоемкая и длительная работа.

Далее Бантинг и Бест начали добывать экстракт из поджелудочной железы еще не рожденных телят, у которых еще не начали вырабатываться пищеварительные ферменты, но уже производилось достаточное количество инсулина. Количества инсулина теперь было достаточно для того,чтобы поддерживать жизнь подопытной собаки уже до 70 дней. К тому времени Маклеод вернулся из Европы и понемногу стал интересоваться работой Бантинга и Беста, он принял решение подключить к ней весь персонал лаборатории. Бантинг с самого начала назвал полученный экстракт поджелудочной железы ислетином, но потом прислушался к предложению Маклеода и переименовал его в инсулин (от лат. insula – «остров»).

Исследования по получению инсулина успешно продолжались. 14 ноября 1921 г. Бантинг и Бест сделали сообщение о результатах своих исследований на заседании клуба «Физиологического журнала» университета Торонто. Спустя месяц они рассказали о своих успехах в Американском физиологическом обществе в Нью-Хейвене.

Количество экстракта, который получали из поджелудочных желез крупного рогатого скота, забитого на бойне, стало быстро увеличиваться, необходим был специалист для обеспечения тонкой очистки инсулина. Для этого в конце 1921 г. Маклеод пригласил к работе известного биохимика Джеймса Коллипа, он очень быстро добился хороших результатов по очистке инсулина. К январю 1922 г. Бантинг и Бест решили начать первые клинические испытания инсулина на человеке.

Сначала ученые ввели по 10 условных единиц инсулина друг другу, а уже потом – добровольцу. Им стал 14-летний мальчик Леонард Томпсон, который болел сахарным диабетом. Первую инъекцию ему сделали 11 января 1922 г., но она была не совсем удачной. Причиной этому было то, что экстракт недостаточно очистили, начала развиваться аллергия. Следующие 11 дней Коллип упорно работал в лаборатории с целью улучшения экстракта, уже 23 января мальчику сделали вторую инъекцию инсулина.

После ввода инсулина мальчик стал быстро идти на поправку – он был первым человеком, который выжил благодаря инсулину. Некоторое время спустя Бантинг спас от неминуемой смерти своего друга – врача Джо Джилькриста.

Весть о том, что инсулин впервые успешно применили 23 января 1922 г. очень быстро стала международной сенсацией. Бантинг и его коллеги практически воскрешали сотни больных диабетом, особенно с тяжелыми формами. Люди присылали очень много писем с просьбами об излечении, некоторые приезжали непосредственно в лабораторию. Несмотря на все это, на тот момент существовало очень много недостатков – препарат инсулина еще не стандартизировали, средств самоконтроля не было, и вводимые дозы отмеряли грубо, на глаз. В связи с этим, часто происходили гипогликемические реакции организма, когда уровень глюкозы падал ниже нормы.

Несмотря на все это, продолжались усовершенствование внедрение инсулина в повседневную врачебную практику.

Университет Торонто начал продажу фармацевтическим компаниям лицензии на производство инсулина, уже к 1923 г. он стал доступен всем больным сахарным диабетом.

Разрешение на производство лекарства получили компании «Лили» (США) и «Ново Нордиск» (Дания), они и сейчас являются лидерами в этой области. Бантингу в 1923 г. университет Торонто присвоил степень доктора наук, его избрали профессором. Помимо этого было принято решение открыть отделения медицинских специальных исследований для Бантинга и Беста, им назначили высокие персональные оклады.

В 1923 г. Бантингу и Маклеоду присудили Нобелевскую премию по физиологии и медицине, которую они на добровольных началах разделили с Бестом и Коллипом.

В 1926 г. ученый-медик Абель синтезировал синтезировать инсулин в кристаллическом виде. Спустя 10 лет датский исследователь Хагедорн добыл инсулин пролонгированного (продленного) действия, а еще спустя 10 лет создал нейтральный протамин Хагердона, он до сих пор является одним из наиболее популярных видов инсулина.

Химический состав инсулина установил британский молекулярный биолог Фредерик Сенгер, которому присвоили в 1958 г. за это Нобелевскую премию. Инсулин стал первым белком, последовательность аминокислот которого полностью расшифровали.

Пространственное строение молекулы инсулина установили с помощью метода рентгеновской дифракции в 1990-х гг. Дороти Кроуфт Ходжкин, ее также наградили Нобелевской премией.

После того, как Бантинг добыл бычий инсулин, исследовали инсулин, полученный из поджелудочных желез свиней и коров, а также других животных (например, китов и рыб).

Молекула человеческого инсулина состоит из 51 аминокислоты. Свиной инсулин отличается только одной аминокислотой, коровий – тремя, но это не мешает им нормализовать уровень сахара вполне хорошо. Несмотря на это, у инсулина животного происхождения существует большой недостаток – у большей части больных он становится причиной аллергической реакции. В связи с этим требовались дальнейшие работы по усовершенствованию инсулина. В 1955 г. расшифровали структуру человеческого инсулина, и приступили к работам по его выделению.
Впервые это сделали в 1981 г. американские ученые Жильбер и Ломедико. Некоторое время спустя появился инсулин, который получили из пекарских дрожжей методом генной инженерии. Инсулин стал первым из человеческих белков, который синтезировали в 1978 г. генетически модифицированной бактерией Е. coli. С этого момента в биотехнологии началась новая эпоха. Начиная с 1982 г. американская компания «Генентех» выпускает человеческий инсулин, который синтезировали в биореакторе. Он не приводит к появлению аллергических реакций.

Фармакологическое действие (по данным производителя)

Инсулин является средством, которое понижает сахар и обладает способностью регулировать углеводный обмен; усиливает усвоение тканями глюкозы и способствует ее превращению в гликоген, кроме этого облегчает проникновение глюкозы в клетки тканей.

Помимо оказания гипогликемического действия (понижения уровня сахара в крови), инсулин имеет несколько других эффектов: повышает запасы гликогена в мышцах, стимулирует синтез пептидов, снижает расход белка и др.

Влияние инсулина сопровождается стимуляцией или ингибированием (подавлением) некоторых ферментов; стимулируются гликогенсинтетаза, пируватдегидрогеназа, гексокиназа; ингибируются липаза, которая активирует жирные кислоты жировой ткани, липопротеиновая липаза, снижающая "помутнение" сыворотки крови после приема пищи, насыщенной жирами.

Степень биосинтеза и секреции (выделения) инсулина находится в зависимости от содержания глюкозы в крови. При повышении ее концентрации усиливается секреция инсулина поджелудочной железой; снижение концентрации глюкозы в крови замедляет секрецию инсулина.

Действие инсулина напрямую связано с его взаимодействием со специфическим рецептором, который находится на плазматической мембране клетки, и образование инсулинрецепторного комплекса. Инсулиновый рецептор вместе с инсулином проникает в клетку, там влияет на процессы фосфолирования клеточных белков; механизм действия дальнейших внутриклеточных реакций до конца не известен.

Активность инсулина определяют биологическим путем (по способности понижать концентрацию глюкозы в крови у здоровых кроликов) и одним из физикохимических методов (методом электрофореза на бумаге или методом хроматографии на бумаге). За одну единицу действия (ЕД), или интернациональную единицу (ИЕ), принимают активность 0,04082 мг кристаллического инсулина.

Метаболические эффекты инсулина

  1. Улучшает поглощение клетками глюкозы и других веществ;
  2. Активирует основные ферменты гликолиза;
  3. Увеличивает интенсивность синтеза гликогена – инсулин форсирует запасание глюкозы клетками печени и мышц с помощью полимеризации её в гликоген;
  4. Снижает интенсивность глюконеогенеза – уменьшается создание в печени глюкозы из различных веществ неуглеводной природы (белков и жиров).

Анаболическое действие инсулина

  • Влияет на усиление поглощения клетками аминокислот (особенно лейцина и валина);
  • Улучшает передвижение в клетку ионов калия, а также магния и фосфата;
  • Влияет на усиление репликации ДНК и биосинтеза белка;
  • Усиливает синтез жирных кислот и дальнейшую их этерификацию – в жировой ткани и в печени
  • Стимулирует превращение глюкозы в триглицериды; при нехватке инсулина происходит обратное – мобилизация жиров.

Антикатаболическое действие инсулина

  1. Угнетает гидролиз белков – снижает деградацию белков;
  2. Уменьшает липолиз – снижает поступление жирных кислот в кровь.

Виды используемого инсулина в бб

Инсулин короткого действия

Короткий инсулин начинает действовать в случае подкожного ввода через 30 минут (в связи с этим вводят за 30-40 минут до еды), максимум действия приходится через 2 часа, исчезает из организма через 5-6 часов.

Лучший выбор

  • Хумулин Регуляр
  • Актрапид HМ

Инсулин ультракороткого действия

Ультракороткий инсулин начинает действовать через 15 минут, максимум через 2 часа, исчезают из организма через 3-4 часа. Он физиологичнее, его можно вводить прямо перед приёмом пищи (за 5-10 минут) или сразу после еды.

Лучший выбор

  • Инсулин лизпро (Хумалог) – полусинтетический аналог человеческого инсулина.
  • Инсулин аспарт (НовоРапид Пенфилл, НовоРапид ФлексПен).
  • Инсулин глулизин (Хумалог)

Преимущества и недостатки инсулина

Преимущества

  • Маленькая стоимость курса
  • Широкая доступность - препарат можно без проблем купить в аптеке
  • Высокое качество – подделки почти на встречаются, в отличии от стероидов
  • Отсутствует токсичность, малая вероятность возникновения побочных эффектов, почти полное отсутствие последствий курса
  • Малый феномен отката
  • Обладает выраженным анаболическим действием
  • Можно комбинировать с анаболическими стероидами и другими средствами
  • Отсутствует андрогенное воздействие

Недостатки

  • Сложная схема приема
  • Происходит значительная прибавка жира
  • Гипогликемия

Приём инсулина

  1. Данный курс идеален для набора 5-10 кг мышечной массы на протяжении 1-2 месяцев, далее необходимо сделать перерыв не меньше двух месяцев, чтобы восстановить собственную секрецию.
  2. Изучите механизм действия инсулина, в том числе меры борьбы с гипогликемией.
  3. Начинать курс следует с дозы 10 ЕД подкожно, со временем (1 раз в день или через день) увеличивайте дозировку на 2 ЕД.
  4. С особой внимательностью отслеживайте реакцию организма на увеличение дозы!
  5. Далее можно увеличить дозу до 15-20 ЕД, большие дозы не рекомендуются (стоит отметить, что это зависит от чувствительности тканей к инсулину, некоторые спортсмены отлично переносят 50-60 ЕД инсулина и только при приеме таких доз растут, но это можно выяснять только постепенно увеличивая дозы).
  6. Следует отметить, что инсулиновые шприцы имеют различные шкалы. Шприцы U-40 используют для инъекций инсулина, содержащего 40 единиц в 1 мл. Шприцы U-100 внешне очень напоминают U-40, но их применяют для препаратов с содержанием 100 единиц инсулина в 1 мл.
  7. Частоту инъекций можно изменять, но наиболее щадящим считают прием через день. Лучше выполнять инъекции сразу после тренировки (но только тогда, когда тренировка заканчивается не поздно вечером в случае потребления инсулина короткого действия, если необходимо принять инсулин после тренировки вечером, это должен быть инсулин ультракороткого действия, в связи с тем, что он работает всего 3 часа и успеет перестать работать до сна), так как сразу после нее должен следовать обильный прием пищи, для обеспечения поставки углеводов в кровь. Помимо этого, инсулин имеет свойство угнетать катаболические процессы, вызванные физическим стрессом во время тренинга. Продолжительность курса при таком режиме составляет 2-2,5 месяца.
  8. Можно выполнять инъекции каждый день и даже 2 раза в день, но тогда продолжительность курса следует сократить до 1,5-2 месяцев.
  9. Если применяете инсулин ультракороткого действия, то делать инъекцию надо непосредственно после обильного приема пищи, богатого углеводами.
  10. Если применяете инсулин короткого действия, делать инъекцию надо за 30 минут до обильного приема пищи, богатого углеводами.
  11. На 1 ЕД инсулина, следует принимать 6 г углеводов.
  12. Делайте инъекции в разные места, чтобы избежать липодистрофии (неровности в подкожно-жировой клетчатке).
  13. Для успешного прохождения курса следует соблюдать высококалорийную диету, проводить силовые тренировки, а также употреблять спортивное питание для набора массы.

Меры предосторожности

  1. Начинать курс следует с небольшой дозы - 5-10 ЕД, для проверки реакции организма.
  2. Выполняйте только подкожные инъекции
  3. Не делайте инъекции перед тренировкой
  4. Не делайте инъекции сразу перед сном
  5. После инъекции следует обеспечить организм углеводами (у здорового человека сахар в крови натощак колеблется от 3 до 5,5 ммоль/л. Каждая единица инсулина снижает сахар крови на 2,2 ммоль/л. Если уколоть 20 единиц инсулина ультракороткого действия, может развиться гипогликемия.
  6. В эндокринологии (куда относится инсулин) есть такое понятие, как "хлебная единица". Вне зависимости от вида и количества продукта, не важно, что это, одна хлебная единица содержит 12-15 граммов усвояемых углеводов. Она повышает уровень сахара в крови на одну и ту же величину - 2,8 ммоль/л – ей надо для усвоения организмом примерно 1,5-2 единицы инсулина. Более широко об этой мере исчисления можно узнать в интернете.
  7. Теперь посчитаем. На 20 единиц инсулина следует принять 10-15 хлебных единиц, это равно 120-150 г чистых углеводов. К примеру, пусть будет 300-450 грамм белого хлеба.

Побочные действия инсулина

  • Гипогликемия или уменьшение содержания глюкозы в крови, это приводит ко всем остальным проявлениям. Гипогликемию можно без проблем предотвратить
  • Зуд в области укола
  • Аллергия наблюдается очень редко
  • Уменьшение эндогенной секреции инсулина бывает только на длительных курсах, когда используют высокие дозы инсулина
  • Инсулин НЕ ОКАЗЫВАЕТ токсического влияния на печень или почки, он НЕ ВЫЗЫВАЕТ нарушений половой функции (потенции).

Показания к лекарственному применению инсулина

Сахарный диабет.

В небольших дозах (5–10 ЕД) инсулин применяют при заболеваниях печени (гепатиты, начальные стадии цирроза), при ацидозе, истощении, упадке питания, фурункулёзе, при тиреотоксикозе.

В психоневрологической практике инсулин используют при алкоголизме, при истощении нервной системы (в дозах, которые влекут гипогликемическое состояние).

В психиатрии – для инсулинокоматозной терапии (при лечении некоторых форм шизофрении вводят раствор инсулина в больших количествах, которые при постепенном увеличении доз вызывают гипогликемический шок).

В дерматологии инсулин применяется при диабетической токсидермии, как неспецифическое средство – при экземе, угревой сыпи, крапивнице, псориазе, хронических пиодермиях и дрожжевых поражениях.

Противопоказания к медицинскому применению

Острый гепатит, панкреатит, нефрит, почечнокаменная болезнь, язвенная болезнь желудка и двенадцатиперстной кишки, декомпенсированный порок сердца.

Инсулином называется гормон, производимый бета-клетками островков Лангерганса поджелудочной железы. Название инсулина происходит от латинского insula – остров. Эффекты инсулина

Несмотря на то, что инсулин вызывает множество эффектов в различных тканях человеческого тела, его основным эффектом является стимулирование перехода глюкозы из крови внутрь клеток, что приводит к снижению концентрации глюкозы в крови.

Другими эффектами инсулина являются стимулирование синтеза в печены и мышцах гликогена из глюкозы, увеличение создания жиров и белков, подавление активности ферментов, разрушающих жиры и белки. Таким образом, инсулин обладает анаболическим действием, поскольку усиливает образование жиров и белков, одновременно замедляя их распад.

Основной эффект инсулина заключается в усилении переноса глюкозы через клеточную мембрану внутрь клетки. Других гормонов, снижающих уровень глюкозы крови, в организме человека не существует. Основные эффекты инсулина проявляются в мышцах и жировой ткани, поэтому эти ткани называют инсулинозависимыми. Уровень глюкозы крови снижается при воздействии инсулина и повышается при воздействии т.н. гипергликемических гормонов (глюкагона, соматотропного гормона, глюкокортикоидов).

Дополнительными эффектами инсулина являются увеличение интенсивности образования гликогена, уменьшение образования глюкозы в печени, усиление поглощения клетками аминокислот, необходимых для синтеза белка. Одновременно инсулин уменьшает разрушение белков и жиров. Таким образом, общий эффект инсулина является анаболическим – направленным на формирование жировой и мышечной ткани.

Строение инсулина

Инсулин является полипептидным гормоном, состоящим из двух аминокислотных цепей: А- и В-цепи. Полипептидные цепи соединяются дисульфидными мостиками. Человеческий инсулин по структуре близок к свиному и бычьему, хотя и отличается от них одним и тремя аминокислотными остатками соответственно.

Открытие инсулина

Островки поджелудочной железы были открыты в 1869 году Паулем Лангергансом при микроскопическом исследовании структуры поджелудочной железы. В 1889 году Оскар Малиновски в Германии при удалении поджелудочной железы у собаки вызвал у нее симптомы сахарного диабета. В 1921 году Ф. Бантинг и Ч. Бест выделили из клеток островков поджелудочной железы инсулин, а Д. Коллип разработал методику его очистки.

В 1922 году инсулин впервые был введен пациенту, страдающему сахарным диабетом. Его лечебное действие показало, что такой вид терапии является наиболее эффективным. В последующие годы основные усилия ученых были направлены на организацию производства в больших количествах. В 1923 году была вручена Нобелевская премия за открытие и выделение инсулина. В последующем аминокислотная структура инсулина была полностью расшифрована Ф. Сенгером.

Синтез инсулина

В островковых клетках поджелудочной железы инсулин синтезируется в несколько этапов. На первом этапе происходит синтез молекулы предшественника инсулина – препроинсулина. На втором этапе от молекулы препроинсулина отделяется сигнальный пептид, после чего образуется проинсулин. После созревания происходит образование окончательной молекулы инсулина. На этапе созревания от молекулы проинсулина отделяется С-пептид, который не оказывает биологического действия. После отделения С-пептида формируется активная форма инсулина.

Выделение инсулина в кровь происходит при повышении уровня глюкозы в крови. Дополнительно регуляция выработки инсулина производится автономной нервной системы. Разрушение инсулина происходит в печени и почках при воздействии фермента инсулиназы.

Препараты инсулина

В настоящее время фармацевтическая промышленность производит значительное число препаратов инсулина, имеющих различные биологические эффекты. Выделяют человеческий, свиной инсулины, инсулин крупного рогатого скота. По степени очистки различают традиционные, монопиковые, монокомпонентные инсулины. По времени действия выделяют инсулины короткого и пролонгированного действия. Последние делятся на инсулины среднего, длительного и сверхдлительного срока действия. Есть также инсулины ультракороткого и депо-инсулины, выделяющиеся медленно из подкожной клетчатки.

Подбор схемы инсулинотерапии – сложное и очень ответственное мероприятие. От правильности выбора формы инсулина и схемы его дозирования зависит успешность достижения компенсации сахарного диабета и, как следствие, качество жизни пациента.

  • Типы сахарного диабета

    В настоящее время выделяется два основных типа сахарного диабета, различающиеся по причине и механизму появления, а также по принципам лечения

  • Сахарный диабет 1 типа

    Сахарный диабет 1 типа - заболевание эндокринной системы, для которого характерным признаком является повышенная концентрация глюкозы в крови, которое развивается из-за деструктивных процессов в специфических клетках поджелудочной железы, секретирующих гормон - инсулин, вследствие чего наблюдается абсолютный недостаток инсулина в организме

  • Сахарный диабет 2 типа

    Сахарный диабет 2 типа - одна из разновидностей сахарного диабета - заболевания обмена веществ, возникающего в результате пониженной чувствительности клеток к инсулину, а также относительной недостачи инсулина в организме

  • Гестационный сахарный диабет при беременности

    Гестационный сахарный диабет может развиваться при беременности (примерно в 4% случаев). В его основе лежит снижение способности по усвоению глюкозы

  • Гипогликемия

    Гипогликемией называют патологическое состояние, характеризующееся снижением концентрации глюкозы в плазме крови ниже уровня 2,8 ммоль/л, протекающее с определенной клинической симптоматикой, либо менее 2,2 ммоль/л независимо от наличия или отсутствия клинических признаков

  • Кома при сахарном диабете

    Информация о наиболее опасном осложнении сахарного диабета, требующем экстренной медицинской помощи,- коме. Описываются виды ком при сахарном диабете, их специфические признаки, тактика лечения

  • Синдром диабетической стопы

    Синдром диабетической стопы - одно из осложнений сахарного диабета, наряду с диабетической офтальмопатией, нефропатией и др., представляющее собой патологическое состояние, возникшее вследствие поражения периферической нервной системы, артериального и микроциркуляторного русла, проявляющееся гнойно-некротическими, язвенными процессами и повреждением костей и суставов стопы

  • О диабете

    Сахарный диабет - термин, объединяющий эндокринные заболеваний, характерной чертой которых является недостаточность действия гормона инсулина. Главным симптомом сахарного диабета является развитие гипергликемии – увеличения концентрации глюкозы в крови, имеющее стойкий характер

Гормоны поджелудочной железы

Механизм действия и метаболические эффекты инсулина.

ЛЕКЦИЯ № 10

Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV. Педфак . Возрастные особенности ПФШ и ГНГ, значение.


ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме. 1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) - инсулин, D- (или δ-) клетки (<5%) - соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной железы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Инсулин - полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В - 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).


Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсу­лина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Какой орган и как вырабатывает инсулин, механизм действия

5 (100%) проголосовало 1

Все диабетики знают, что такое , и что он нужен для снижения уровня глюкозы в крови. Но какова его структура, какой орган вырабатывает инсулин и какой механизм действия? Об это и пойдет речь в этой статье. Самым любопытным диабетикам посвящается…

Какой орган вырабатывает инсулин в организме человека

Человеческий орган, отвечающий за выработку гормона инсулина — это поджелудочная железа . Основная функция железы — эндокринная.

Ответ на вопрос: «Что или какой человеческий орган вырабатывает инсулин» — поджелудочная железа.

Благодаря панкреатическим островкам (Лангерганса), производятся 5 видов гормонов, большинство которых регулируют «сахарные дела» в организме.

  • a клетки — вырабатывают глюкагон (стимулирует распад гликогена печени в глюкозу, поддерживая уровень сахара на постоянном уровне)
  • b клетки — производят инсулин
  • d клетки — синтезирует соматостатин (способен уменьшать выработку инсулина и глюкагона поджелудочной)
  • G клетки — продуцируется гастрин (регулирует секрецию сомастотина, и участвует в работе желудка)
  • ПП клетки — вырабатывают панкреатический полипептид (стимулирует выработку желудочного сока)

Большую часть клеток составляют бета клетки (b клетки), которые находятся в основном на кончике и в головном отделе железы, и секретируют диабетический гормон инсулин.

Ответ на вопрос: «Что вырабатывает поджелудочная железа кроме инсулина» — гормоны для работы желудка.

Состав инсулина, строение молекулы

Как мы видим на рисунке, молекула инсулина состоит из двух полипептидных цепей. Каждая цепь состоит из аминокислотных остатков. В цепи А содержится 21 остаток, в цепи В — 30. И того, инсулин состоит из 51 аминокислотного остатка. Цепи соединены в одну молекулу дисульфидными мостиками, которые образуются между остатками цистеина.

Интересно то, что у свиней строение молекулы инсулина практически такое же, отличие есть только в одном остатке — вместо треонина у свинок в цепи В находится аланин. Именно из-за этого сходства свиной инсулин часто используют для изготовления инъекций. Кстати, бычий тоже используют, но он отличается уже на 3 остатка, а значит менее подходит для организма человека.

Выработка инсулина в организме, механизм действия, свойства

Инсулин вырабатывается поджелудочной железой, когда повышается уровень глюкозы в крови.

Образование гормона можно разделить на несколько этапов:

  • Изначально в железе образуется неактивная форма инсулина — препроинсулин . Он состоит из 110 аминокислотных остатков, созданных объединением четырех пептидов — L, B, C и А.
  • Далее происходит синтез препроинсулина в эндоплазматическая сеть. Для того, чтобы пройти сквозь мембрану, отщепляется L-пептид, который состоит из 24 остатков. Таким образом возникает проинсулин .
  • Проинсулин поступает в комплекс Гольджи, где и продолжит свое созревание. Во время созревание отделяется С-пептид (состоящий из 31 остатка), который соединял В и А пептиды. В этот момент молекула проинсулина разделяется на две полипептидные цепи, образуя необходимую молекулу инсулина .

Как работает инсулин

Для того, чтобы высвободить инсулин из гранул , в которых он теперь хранится, нужно сообщить поджелудочной о повышении уровня глюкозы в крови. Для этого существует целая цепочка взаимосвязанных процессов, которые активизируются при повышении сахара.

  • Глюкоза в клетке подвергается гликолизу и образует аденозинтрифосфат (АТФ).
  • АТФ контролирует закрытие ионных калиевых каналов, вызывая деполяризацию мембраны клетки.
  • Деполяризация открывает кальциевые каналы, вызывая ощутимый приток кальция в клетку.
  • Гранулы, в которых хранится инсулин, реагируют на это повышение, и высвобождают необходимое количество инсулина. Высвобождение происходит с помощью экзоцитоза . То есть гранула сливается с мембраной клетки, цинк, который сковывал активность инсулина, отщепляется, и активный инсулин поступает в организм человека.

Таким образом, организм человека получает необходимый регулятор глюкозы в крови.

За что отвечает инсулин, роль в организме человека

Гормон инсулин участвует во всех обменных процессах в организме человека. Но самая важная его роль — углеводный обмен . Влияние инсулина на углеводный обмен состоит в транспортировке глюкозы непосредственно в клетки организме. Жировые и мышечные ткани, которые составляют две трети тканей человека, являются инсулинозависимыми. Без инсулина глюкоза не может попасть в их клетки. Кроме этого, инсулин также:

  • регулирует поглощение аминокислот
  • регулирует транспортировку калия, магния и ионов фосфатов
  • усиливает синтез жирных кислот
  • уменьшает разрушение белков

Очень интересное видео про инсулин ниже.

Ответ на вопрос: «Для чего нужен инсулин в организме» — регулирование углеводного и других обменных процессов в организме.

Заключения

В этой статье я постаралась максимально доступно рассказать какой орган вырабатывает инсулин, процесс выработки и как действует гормон на человеческий организм. Да, пришлось использовать некоторые сложные термины, но без них нельзя было бы максимально полно раскрыть тему. Зато теперь вам видно, какой на самом деле сложный процесс появления инсулина, его работы и влияния на наше здоровье.

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи. На данном этапе в молекуле проинсулина присутствуют А-цепь , В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для "созревания" гормона. По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина . В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn 2+ .

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),
2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,
3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,
4. Накопление АТФ стимулирует закрытие ионных K + -каналов, что приводит к деполяризации мембраны,
5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca 2+ -каналов и притоку ионов Ca 2+ в клетку,
6. Поступающие ионы Ca 2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ 3),
7. Появление ИФ 3 в цитозоле открывает Ca 2+ -каналы в эндоплазматической сети, что ускоряет накопление ионов Ca 2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca 2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn 2+ и выход молекул активного инсулина в кровоток.

Схема внутриклеточной регуляции синтеза инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция .

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин . Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. При гипогликемии они оказывают обратный эффект, подавляя экспрессию гена инсулина.

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина , секретина , гастрина , желудочного ингибирующего полипептида .

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона , АКТГ и глюкокортикоидов , эстрогенов , прогестинов . При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию. Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α 2 -адренорецепторов. С другой стороны, стимуляция β 2 -адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus , в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты - только 40 рецепторов на клетку.

Механизм действия

После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки - субстраты инсулинового рецептора. Дальнейшее развитие событий обусловлено двумя направлениями: MAP-киназный путь и фосфатидилинозитол-3-киназный механизмы действия .

При активации фосфатидилинозитол-3-киназного механизма результатом являются быстрые эффекты – активация ГлюТ-4 и поступление глюкозы в клетку, изменение активности "метаболических" ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

При реализации MAP-киназного механизма (англ. mitogen-activated protein ) регулируются медленные эффекты – пролиферация и дифференцировка клеток, процессы апоптоза и антиапоптоза.

Два механизма действия инсулина

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов :

1. Активации Na + /K + -АТФазы , что вызывает выход ионов Na + и вход в клетку ионов K + , что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na + /H + -обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H + в обмен на ионы Na + . Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca 2+ -АТФазы приводит к задержке ионов Ca 2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень
  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП ,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),
Мышцы
  • торможение эффектов адреналина (фосфодиэстераза),
  • ГлюТ-4 ),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).
Жировая ткань
  • стимулирует транспорт глюкозы в клетки (активация Глют-4 ),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза ),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз ),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот ),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь ),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез ).

4. Обеспечивает процессы трансляции , повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста .

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Именно группой медленных эффектов объясняется "парадокс" наличия инсулинорезистентности адипоцитов (при сахарном диабете 2 типа) и одновременное увеличение массы жировой ткани и запасание в ней липидов под влиянием гипергликемии и инсулина.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах . После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы. В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.