Мощный блок питания для унч. Встроенный в системный блок унч

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Может быть кого-нибудь заинтересует такой девайс — встроенный в системный блок УНЧ 2х25 Вт.

Внешний вид девайса

Хорошая мать, хорошая звуковая карта, хорошие, но пассивные колонки…

В итоге на рабочем месте (у компа) нет приличного звука. Долго извращался со всякими внешними усилителями, которые занимают место на столе, требуют дополнительную розетку, провода, и всякие прочие неудобности. В конце концов надоело, и сделал встроенный УНЧ на базе мс TDA8560Q — автомобильный двухканальный усилитель 2х40 Вт на нагрузке 2 Ома. На 4-омной нагрузке мощность чуть меньше — 2х25 Вт. Обвязка — пара электролитов по питанию, входные делители (25 Вт лишковато, однако), 4 кондерчика в развязку по входу и в цепи питания, и если совсем уж пальцы веером — транзистор для «мягкого» запуска (чтобы не было щелчков при включении).

Все это очень удобно разместилось на плате формата стандартной PCI-ной карточки, которую вставил в свободный слот на мамке. Чтобы не грузить дорожки материнки, питание (бортовые 12 вольт) подал через отдельный разъем (как на всех IDE-устройствах — сидюках, винтах, и современных видеокартах). Под рукой была крепежная планка от старой видеокарточки S3-Trio, так что вообще ничего напильником делать не пришлось.

В качестве выходного разъема применил розетку DRB-9 (аналогичную разъему COM-порта, только «маму»). Не очень удобно, что провода от обеих колонок пришлось загнать в один разъем, но зато «конструктив» девайса получился очень простой.

Усилитель соединил с выходом звуковой карты обычным аудио-шнурком от сидюка (только припаял с одной стороны разъем «мини-джек» диаметром 3,5мм).

Для охлаждения микросхемы усилителя отлично подошел стандартный радиатор от старенького процессора, толи 486-го, толи от первого пня (высотой всего 12 мм). На него, при желании, даже кулер можно поставить (на плате предусмотрел разъем). Но, как показал месяц активной эксплуатации, этого не требуется, температура радиатора не превышает 40-50 градусов даже при длительной работе и на большой мощности.

(нарисовано в чертилке SLayout-4). Схема — стандартная из даташит на микросхему, но если нужно, выложу дополнительно. Единственное отличие — на входе каждого канала сделал делители 6:1 (5,6 кОм и 1 кОм), иначе уровень сигнала со звуковухи лишковат.

Номиналы всех деталей нарисованы на печатке.

Кстати, для того, чтобы установить радиатор, мелкосхему пришлось уложить «на спину» — металлической подложкой в сторону радиатора, соответственно пришлось зеркально переформовать выводы микросхемы (выгнуть в другую сторону).

Если будете использовать крепежную планку от другой карты (допустим, от доп. разъема СОМ-порта), то возможно придется изменить место выходного разъема (сдвинуть его вверх или вниз по плате). В крайнем случае можно использовать стандартную планку-заглушку, но придется полчасика послесарить, и выпилить отверстие под выходной разъем.

Разъем для подачи питания на усилитель выпаял с платы какого-то древнего винчестера. Можно взять с 5-дюймового дисковода или с сидюка.

Надеюсь, что с повторением этой полезной штуковины проблем не будет.

Единственный совет: не забывайте, что ток БП компа по 12 вольтам всего несколько ампер (конкретно смотрите на своем БП), и поэтому не старайтесь «выкачать» из TDA-шки все, что она может выдать. Расчет простой — 1 ампер потребляемого тока может обеспечить выходную мощность усилителя примерно по 5 Вт на канал, соответственно 2 ампера — 2х10 Вт, и т.д. У меня блок питания в компе 450 Вт, способен выдавать до 14 ампер по 12 вольтам, так что 4-5 ампер «на сторону» не оказывают отрицательного влияния на работу компьютера.

Не жадничайте, и всё у вас будет в шоколаде!

Данный конструктор позволяет собрать электронную защиту от перегрузки по току для двухполярного блока питания мощностью до 200 Вт.

Краткое описание

Работа схемы

Схема соединений:

Примечания:

Характеристики:

"Ложь183700,001RP143651-1Ложь2654 Данный конструктор позволяет собрать электронную защиту от перегрузки по току для двухполярного блока питания мощностью до 200 Вт.

Краткое описание
Электронная защита предназначена для совместного использования с двухполярным блоком питания УМЗЧ и позволяет ограничить средний потребляемый ток не реагируя на кратковременные перегрузки. В устройстве применена триггерная защита.

Работа схемы
Если ток нагрузки меньше порога срабатывания, горит зеленый светодиод HL3 (HL4). Когда ток нагрузки, протекающий через R13 (R14), превышает порог срабатывания, возникает падение напряжения, достаточное для открытия транзистора VT5 (VT6), что приводит к срабатыванию триггера на VT3-VT5 (VT4-VT6). Триггер шунтирует стабилитрон VD5 (VD6), и ключ на VT1 (VT2) размыкается. Загорается светодиод HL1 (HL2), сигнализирующий о срабатывании защиты. Конденсаторы С1, С2, С5, С6 и диоды VD1-VD4 создают вольтодобавку для затворов полевых транзисторов VT1, VT2, работающих в ключевом режиме.
Конденсаторы С9, С10 замедляют срабатывание защиты.
Стабилитроны VD5, VD6 служат для защиты цепи затвор-исток полевых транзисторов от высокого напряжения.

Схема соединений:

Схема электрическая принципиальная:

Схема расположения элементов:

Примечания:
• Увеличив ёмкость конденсаторов С9 и С10 можно увеличить время срабатывания защиты.
• При уменьшении времени срабатывания защиты и емкостной нагрузке возможно ложное срабатывание защиты при включении питания. Для исключения этого следует уменьшить ёмкость конденсаторов С11 и С14 до 100 мкФ или применить устройство плавного запуска.

Характеристики:
• Напряжение питания ±15..50 В;
• Порог срабатывания защиты 1..2 А.

Другие статьи посвящённые постройке этого УНЧ.

Принципиальная схема блока питания.

Блок питания собран по одной из стандартных схем. Для питания оконечных усилителей выбрано двухполярное питание. Это позволяет использовать недорогие высококачественные интегральные усилители и устраняет ряд проблем связанных с пульсациями напряжения питания и переходными процессами возникающими при включении. https://сайт/


Блок питания должен обеспечивать питание трёх микросхем и одного светодиода. В качестве оконечных усилителей мощности используются две микросхемы TDA2030, а в качестве регулятора громкости, сетеробазы и тембра – одна микросхема TDA1524A.


Электрическая схема блока питания.



VD3... VD6 – КД226


C1 – 680mkFx25V

C3... C6 – 1000mkFx25V



На диодах VD3… VD6 собран двухполярный двухполупериодный выпрямитель со средней точкой. Такая схема включения снижает падение напряжения на диодах выпрямителя в два раза по сравнению с обычным мостовым выпрямителем, так как в каждый полупериод ток течет только через один диод.

В качестве фильтра выпрямленного напряжения применены электролитические конденсаторы С3… С6.


На микросхеме IC1 собран стабилизатор напряжения для питания схемы электронного регулятора громкости, стереобазы и тембра. Стабилизатор собран по типовой схеме.

Применение микросхемы LM317 обусловлено лишь тем, что она оказалась в наличии. Здесь можно применить любой интегральный стабилизатор.

Защитный диод VD2, обозначенный пунктирной линией, при выходном напряжении на микросхеме LM317 ниже 25 Вольт применять не обязательно. Но, если входное напряжение микросхемы 25 Вольт и выше, а резистор R3 подстроечный, то лучше диод всё же установить.

Величина резистора R3 определяет выходное напряжение стабилизатора. Во время макетирования, я впаял вместо него подстроечный резистор, установил с его помощью напряжение около 9 Вольт на выходе стабилизатора, а затем измерил сопротивление этого подстроечинка, чтобы можно было установить вместо него постоянный резистор.

Выпрямитель, питающий стабилизатор, выполнен по упрощённой однополупериодной схеме, что продиктовано чисто экономическими соображениями. Четыре диода и один конденсатор стоят дороже, чем один диод и один конденсатор чуть большей ёмкости.

Ток, потребляемый микросхемой TDA1524A всего 35мА, поэтому такая схема вполне оправдана.


Светодиод HL1 – индикатор включения питания усилителя. На плате блока питания установлен балластный резистор этого индикатора – R1 с номинальным сопротивлением 500 Ом. От сопротивления этого резистора зависит ток светодиода. Я использовал зелёный светодиод рассчитанный на 20мА. При использовании красного светодиода типа АЛ307 на ток 5мА, сопротивление резистора можно увеличить в 3-4 раза.

Печатная плата.

Печатная плата (ПП) спроектирована, исходя из конструкции конкретного усилителя и имеющихся в наличии электроэлементов. У платы есть всего одно отверстие для крепления, расположенное в самом центре ПП, что обусловлено не совсем обычной конструкцией .


Для увеличения сечения медных дрожек и экономии хлорного железа, свободные от дорожек места на ПП были залиты с использованием инструмента «Полигон".

Увеличение ширины дорожек также предотвращает отслаивание фольги от стеклотекстолита при нарушении теплового режима или при многократной перепайке радиодеталей.


По чертежу, приведённому выше, была изготовлена печатная плата из фольгированного стеклотекстолита сечением 1мм.

Для присоединения проводов к печатной плате в отверстиях платы были расклёпаны медные штырьки (солдатики).


This movie requires Flash Player 9

А это уже собранная печатная плата блока питания.

Чтобы увидеть все шесть видов, потяните картинку курсором или используйте кнопочки со стрелками, расположенными в нижней части картинки.


Сеточка на медных дорожках ПП, это результат использования вот технологии.

Когда плата собрана её желательно испытать ещё до подключения оконечных усилителей и блока регуляторов. Для испытания блока питания нужно подключить к его выходам эквивалент нагрузки, как на приведённой схеме.

В качестве нагрузки выпрямителей +12,8 и -12,8 Вольт подойдут резисторы типа ПЭВ-10 на 10-15 Ом.

Напряжение на выходе стабилизатора, нагруженного на резистор сопротивлением 100-150 Ом, неплохо посмотреть осциллографом на предмет отсутствия пульсаций при снижении переменного входного напряжения с 14,3 до 10 Вольт.


P.S. Доработка печатной платы.

Во время пусконаладочных работ печатную плату блока питания пришось .

При доработке пришлось разрезать одну дорожку поз.1 и добавить один контакт поз.2 для подключения обмотки трансформатора, питающей стабилизатор напряжения.


Усилитель звуковой частоты (УЗЧ), или усилитель низкой частоты (УНЧ) является одним из самых распространенных электронных устройств. Все мы получаем звуковую информацию, используя ту или иную разновидность УНЧ. Не все знают, но усилители низкой частоты используются также в измерительной технике, дефектоскопии, автоматике, телемеханике, аналоговой вычислительной технике и других областях электроники.

Хотя, конечно же, основное применение УНЧ – донести до нашего слуха звуковой сигнал с помощью акустических систем, преобразующих электрические колебания в акустические. И сделать это усилитель должен максимально точно. Только в этом случае мы получаем то удовольствие, которое доставляют нам любимая музыка, звуки и речь.

С появления в 1877 фонографа Томаса Эдисона до настоящего времени, ученые и инженеры боролись за улучшение основных параметров УНЧ: прежде всего за достоверность передачи звуковых сигналов, а также за потребительские характеристики, такие как потребляемая мощность, размеры, простота изготовления, настройки и использования.

Начиная с 1920-ых годов сформировалась буквенная классификация классов электронных усилителей, которая используется и по сей день. Классы усилителей отличаются режимами работы применяемых в них активных электронных приборов – электронных ламп, транзисторов и т.д. Основными «однобуквенными» классами являются A, B, C, D, E, F, G, H. Буквы обозначений классов могут сочетаться в случае совмещения некоторых режимов. Классификация не является стандартом, поэтому разработчики и производители могут использовать буквы достаточно произвольно.

Особое место в классификации занимает класс D. Активные элементы выходного каскада УНЧ класса D работают в ключевом (импульсном) режиме, в отличие от остальных классов, где большей частью используется линейный режим работы активных элементов.

Одним из основных преимуществ усилителей класса D является коэффициент полезного действия (КПД), приближающийся к 100%. Это, в частности, приводит к уменьшению рассеиваемой активными элементами усилителя мощности, и, как следствие, уменьшению размеров усилителя за счет уменьшения размеров радиатора. Такие усилители предъявляют значительно меньшие требования к качеству источника питания, который может быть однополярным и импульсным. Другим преимуществом можно считать возможность применения в усилителях класса D цифровых методов обработки сигнала и цифрового управления их функциями – ведь именно цифровые технологии преобладают в современной электронике.

С учетом всех этих тенденций компания Мастер Кит предлагает широкий выбор усилителей класса D , собранных на одной и той же микросхеме TPA3116D2, но имеющих различное назначение и мощность. А для того, чтобы покупатели не тратили время на поиски подходящего источника питания, мы подготовили комплекты усилитель + блок питания , оптимально подходящие друг к другу.

В этом обзоре мы рассмотрим три таких комплекта:

  1. (Усилитель НЧ D-класса 2х50Вт + источник питания 24В / 100Вт / 4,5A);
  2. (Усилитель НЧ D-класса 2х100Вт + источник питания 24В / 200Вт / 8,8A);
  3. (Усилитель НЧ D-класса 1х150Вт + источник питания 24В / 200Вт / 8,8A).

Первый комплект предназначен, прежде всего для тех, кому необходимы минимальные размеры, стереозвук и классическая схема регулировки одновременно в двух каналах: громкость, низкие и высокие частоты. Он включает в себя и .

Сам двухканальный усилитель имеет беспрецедентно маленькие размеры: всего 60 х 31 х 13 мм, не включая ручек регуляторов. Размеры блока питания 129 х 97 х 30 мм, вес – около 340 г.

Несмотря на небольшие размеры, усилитель отдает в нагрузку 4 ома честные 50 ватт на канал при напряжении питания 21 вольт!

В качестве предварительно усилителя применена микросхема RC4508 – двойной специализированный операционный усилитель для аудиосигналов. Он позволяет идеально согласовать вход усилителя с источником сигнала, имеет крайне низкие нелинейные искажения и уровень шума.

Входной сигнал подается на трехконтактный разъем с шагом контактов 2,54 мм, напряжение питания и акустические системы подключаются с помощью удобных винтовых разъемов.

На микросхему TPA3116 с помощью теплопроводящего клея установлен небольшой радиатор, площади рассеяния которого вполне хватает даже на максимальной мощности.

Обращаем ваше внимание на то, что с целью экономии места и уменьшения размеров усилителя отсутствует защита от неверной полярности подключения источника питания (переполюсовки), поэтому будьте внимательны при подаче питания на усилитель.

С учетом небольших размеров и эффективности сфера применения комплекта весьма широка – от замены устаревшего или вышедшего из строя старого усилителя до очень мобильного звукоусилительного комплекта для озвучивания мероприятия или вечеринки.

Пример использования такого усилителя приведен .

На плате отсутствуют отверстия для крепления, но для этого с успехом можно использовать потенциометры, имеющие крепления под гайку.

Второй комплект включает в себя на двух микросхемах TPA3116D2, каждая из которых включена в мостовом режиме и обеспечивает до 100 ватт выходной мощности на канал, а также с выходным напряжением 24 вольта и мощностью 200 ватт.

С помощью такого комплекта и двух 100-ваттных акустических систем можно озвучить солидное мероприятие даже вне помещения!

Усилитель снабжен регулятором громкости с выключателем. На плате установлен мощный диод Шоттки для защиты от переполюсовки блока питания.

Усилитель снабжен эффективными фильтрами низкой частоты, установленными согласно рекомендациям производителя микросхемы TPA3116, и обеспечивающими совместно с ней высокое качество выходного сигнала.

Питающее напряжение и акустические системы подключаются с помощью винтовых разъемов.

Входной сигнал может быть подан как на трехконтактый разъем с шагом 2,54 мм, так и с помощью стандартного аудиоразъема типа Jack 3,5 мм.

Радиатор обеспечивает достаточное охлаждение обеих микросхем и прижимается к их термопадам винтом, расположенным с нижней части печатной платы.

Для удобства использования на плате также установлен светодиод зеленого свечения, сигнализирующий о включении питания.

Размеры платы, с учетом конденсаторов и без учета ручки потенциометра составляют 105 х 65 х 24 мм, расстояния между крепежными отверстиями - 98,6 и 58,8 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Третий комплект представляет собой l и с выходным напряжением 24 вольта и мощностью 200 ватт.

Усилитель обеспечивает до 150 ватт выходной мощности на нагрузке 4 ома. Основное применение этого усилителя – построение качественного и энергоэффективного сабвуфера.

По сравнению со многими другими специализированными сабвуферными усилителями, MP3116btl отлично раскачивает низкочастотные динамики достаточно большого диаметра. Это подтверждается отзывами покупателей рассматриваемого УНЧ. Звук получается насыщенный и яркий.

Радиатор, занимающий большую часть площади печатной платы обеспечивает эффективное охлаждение TPA3116.

Для согласования входного сигнала на входе усилителя применена микросхема NE5532 – двухканальный малошумящий специализированный операционный усилитель. Он имеет минимальные нелинейные искажения и широкую полосу пропускания.

На входе также установлен регулятор амплитуды входного сигнала со шлицем под отвертку. С его помощью можно подстроить громкость сабвуфера под громкость основных каналов.

Для защиты от переполюсовки питающего напряжения на плате установлен диод Шоттки.

Питание и акустические системы подключаются с помощью винтовых разъемов.

Размеры платы усилителя 73 х 77 х 16 мм, расстояния между крепежными отверстиями – 69,4 и 57,2 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Во все комплекты включены импульсные источники питания компании MEAN WELL.

Основанная в 1982 году, компания является ведущим производителем импульсных источников питания в мире. В настоящее время корпорация MEAN WELL состоит из пяти финансово независимых компаний-партнеров на Тайване, в Китае, США и Европе.

Продукция MEAN WELL характеризуется высоким качеством, низким процентом отказов и длительным сроком службы.

Импульсные источники питания, разработанные на современной элементной базе, удовлетворяют самым высоким требованиям по качеству выходного постоянного напряжения и отличаются от обычных линейных источников малым весом и высоким КПД, а также наличием защиты от перегрузки и короткого замыкания на выходе.

Источники питания LRS-100-24 и LRS-200-24, используемые в представленных комплектах, имеют светодиодный индикатор включения и потенциометр для точной регулировки выходного напряжения. Перед подключением усилителя проверьте выходное напряжения, и при необходимости выставьте его уровень на 24 вольта с помощью потенциометра.

В примененных источниках используется пассивное охлаждение, поэтому они совершенно бесшумны.

Необходимо отметить, что все рассмотренные усилители могут быть с успехом применены для конструирования звуковоспроизводящих систем для автомобилей, мотоциклов и даже велосипедов. При питании усилителей напряжением 12 вольт выходная мощность будет несколько меньше, но качество звука не пострадает, а высокий КПД позволяет эффективно питать УНЧ от автономных источников питания.

Также обращаем ваше внимание на то, что все рассмотренные в этом обзоре устройства можно приобрести по отдельности и в составе других комплектов на сайте .