Эл разряд. Самостоятельный электрический разряд

Электрический разряд - процесс протекания электрического тока связанный со значительным увеличением электропроводимости среды относительно его нормального состояния.
Увеличение электропроводности обеспечивается наличием дополнительных свободных носителей заряда. Электрические разряды бывают несамостоятельные, протекающие за счёт внешнего источника свободных носителей заряда, и самостоятельные, продолжающие гореть и после отключения внешнего источника свободных носителей заряда.
Различают следующие виды электрических разрядов: искровой, коронный, дуговой (электрическая дуга) и тлеющий.

Присоединим шаровые электроды к батарее конденсаторов и начнем заряжать конденсаторы при помощи электрической машины. По мере заряжения конденсаторов будет увеличиваться разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, в газе нельзя заметить никаких изменений. Однако при достаточной напряженности поля (около 30000 в/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Конденсаторы в этой установке добавлены для того, чтобы сделать искру более мощной и, следовательно, более эффектной.
Описанная форма газового разряда носит название искрового разряда , или искрового пробоя газа. При наступлении искрового разряда газ внезапно, скачком, утрачивает свои изолирующие свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры). При заданном напряжении между электродами напряженность поля тем меньше, чем дальше электроды друг от друга. Поэтому, чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя.
Возникновение пробоя объясняется следующим образом. В газе всегда есть некоторое количество ионов и электронов, возникающих от случайных причин. Обычно, однако, число их настолько мало, что газ практически не проводит электричества. При сравнительно небольших значениях напряженности поля, с какими мы встречаемся при изучении несамостоятельной проводимости газов , соударения ионов, движущихся в электрическом поле, с нейтральными молекулами газа происходят так же, как соударения упругих шаров. При каждом соударении движущаяся частица передает покоящейся часть своей кинетической энергии, и обе частицы после удара разлетаются, но никаких внутренних изменений в них не происходит. Однако при достаточной напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя столкновениями может сделаться достаточной, чтобы ионизировать нейтральную молекулу при столкновении. В результате образуется новый отрицательный электрон и положительно заряженный остаток – ион. Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома, - работой ионизации. Величина работы ионизации зависит от строения атома и поэтому различна для разных газов.
Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивают число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, этот процесс «усиливает сам себя», и ионизация в газе быстро достигает очень большой величины. Все явления вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя. Мы видим, что при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами.
Одним из природных представителей искрового разряда является молния – красивая и не безопасная.

Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа – коронный разряд.
Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора. Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля.
Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле.

Применение коронного разряда.
1) Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной. Внутри стеклянной трубки содержатся два электрода: металлический цилиндр и висящая по его оси тонка металлическая проволока. Электроды присоединены к электрической машине. Если продувать через трубку струю дыма (или пыли) и привести в действие машину, то, как только напряжение сделается достаточным для образования короны, выходящая струя воздуха станет совершенно чистой и прозрачной, и все твердые и жидкие частицы, содержащиеся в газе, будут осаждаться на электродах. Объяснение опыта заключается в следующем. Как только у проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы, соударяясь с частицами пыли, «прилипают» к последним и заряжают их. Так как внутри трубки действует сильное электрическое поле, то заряженные частицы движутся под действием поля к электродам, где и оседают. Описанное явление находит себе в настоящее время техническое применение для очистки промышленных газов в больших объемах от твердых и жидких примесей.
2) Счетчики элементарных частиц. Коронный разряд лежит в основе действия чрезвычайно важных физических приборов: так называемых счетчиков элементарных частиц (электронов, а также других элементарных частиц, которые образуются при радиоактивных превращениях) счетчик Гейгера – Мюллера. Он состоит из небольшого металлического цилиндра A, снабженного окошком, и тонкой металлической проволоки натянутой оп оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник напряжения В в несколько тысяч вольт. Напряжение выбирают таким, чтобы оно было только немного меньше «критического», т. е. Необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона последний ионизует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток.
Возникающий в счетчике ток настолько слаб, что обычным гальванометром его обнаружить трудно. Однако его можно сделать вполне заметным, если в цепь ввести очень большое сопротивление R и параллельно ему присоединить чувствительный электрометр E. При возникновении в цепи тока I на концах сопротивления создается напряжение U, равное по закону Ома U=IxR. Если выбрать величину сопротивления R очень большой (много миллионов ом), однако значительно меньшей, чем сопротивление самого электрометра, то даже очень слабый ток вызовет заметное напряжение. Поэтому при каждом попадании быстрого электрона внутрь счетчика листочек электрометра будет давать отброс.
Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частички, способные производить ионизацию газа путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные частички.

В 1802 г. В. В. Петров установил, что если присоединить к полюсам большой электролитической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их разделить, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела. Испуская ослепительный свет (электрическая дуга ). Это явление семь лет спустя независимо наблюдал английский химик Дэви, который предложил в честь Вольта назвать эту дугу «вольтовой».
Обычно осветительная сеть питается током переменного направления. Дуга, однако, горит устойчивее, если через нее пропускают ток постоянного направления, так что один из ее электродов является все время положительным (анод), а другой отрицательным (катод). Между электродами находится столб раскаленного газа, хорошо проводящего электричество. В обычных дугах этот столб испускает значительно меньше света, нежели раскаленные угли. Положительный уголь, имея более высокую температуру, сгорает быстрее отрицательного. Вследствие сильной возгонки угля на нем образуется углубление – положительный кратер, являющийся самой горячей частью электродов. Температура кратера в воздухе при атмосферном давлении доходит до 4000 °C. Дуга может гореть и между металлическими электродами (железо, медь и т. д.). При этом электроды плавятся и быстро испаряются, на что расходуется много тепла. Поэтому температура кратера металлического электрода обычно ниже, чем угольного (2000-2500 °C).
Заставляя гореть дугу между угольными электродами в сжатом газе (около 20 атм), удалось довести температуру положительного кратера до 5900 °C, т. е. до температуры поверхности Солнца. При этом условии наблюдалось плавление угля.
Еще более высокой температурой обладает столб газов и паров, чрез который идет электрический разряд. Энергичная бомбардировка этих газов и паров электронами и ионами, подгоняемыми электрическим полем дуги, доводит температуру газов в столбе до 6000-7000 °. Поэтому в столбе дуги почти все известные вещества плавятся и обращаются в пар, и делаются возможными многие химические реакции, которые не идут при более низких температурах. Нетрудно, например, расплавить в пламени дуги тугоплавкие фарфоровые палочки. Для поддержания дугового разряда нужно небольшое напряжение: дуга хорошо горит при напряжении на ее электродах 40-45 в. Ток в дуге довольно значителен. Так, например, даже в небольшой дуге, идет ток около 5 А, а в больших дугах, употребляющихся в промышленности, ток достигает сотен ампер. Это показывает, что сопротивление дуги невелико; следовательно, и светящийся газовый столб хорошо проводит электрический ток.
Такая сильная ионизация газа возможна только благодаря тому, что катод дуги испускает очень много электронов, которые своими ударами ионизуют газ в разрядном пространстве. Сильная электронная эмиссия с катода обеспечивается тем, что катод дуги сам накален до очень высокой температуры (от 2200° до 3500°C в зависимости от материала). Когда для зажигания дуги мы в начале приводим угли в соприкосновение, то в месте контакта, обладающем очень большим сопротивление, выделяется почти все джоулево тепло проходящего через угли тока. Поэтому концы углей сильно разогреваются, и этого достаточно для того, чтобы при их раздвижении между ними вспыхнула дуга. В дальнейшем катод дуги поддерживается в накаленном состоянии самим током, проходящие через дугу. Главную роль в этом играет бомбардировка катода падающими на него положительными ионами.

Применение дугового разряда.
Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».
Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.
Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.

Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд . Для получения этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.
При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.
При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. При этом в отличие от дугового разряда катод все время остается холодным. Почему же в этом случае происходит образование ионов?
Падение потенциала или напряжения на каждом сантиметре длины газового столба в тлеющем разряде очень различно в разных частях разряда. Получается, что почти все падение потенциала приходится на темное пространство. Разность потенциалов, существующая между катодом и ближайшей к нему границей пространства, называют катодным падением потенциала. Оно измеряется сотнями, а в некоторых случаях и тысячами вольт. Весь разряд оказывается существует за счет этого катодного падения. Значение катодного падения заключается в том, что положительные ионы, пробегая эту большую разность потенциалов, приобретают большую скорость. Так как катодное падение сосредоточено в тонком слое газа, то здесь почти не происходит соударений ионов с газовыми атомами, и по этому, проходя через область катодного падения, ионы приобретают очень большую кинетическую энергию. Вследствие этого при соударении с катодом они выбивают из него некоторое количество электронов, которые начинают двигаться к аноду. Проходя через темное пространство, электроны в свою очередь ускоряются катодным падением потенциала и при соударения с газовыми атомами в более удаленной части разряда производят ионизацию ударом. Возникающие при этом положительные ионы опять ускоряются катодным падением и выбивают из катода новые электроны и т. д. Таким образом все повторяется до тех пор пока на электродах есть напряжение.
Значит, что причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами.

Применение тлеющего разряда.
Такой разряд используют в основном для освещения. Применяется в люминесцентных лампах.

Л Е К Ц И Я

по дисциплине "Электроника и пожарная автоматика" для курсантов и студентов

по специальности 030502.65 – «Судебная экспертиза»

по теме № 1. «Полупроводниковые, электронные, ионные приборы»

Тема лекции «Индикаторные и фотоэлектрические приборы».

Индикаторные приборы

Электрический разряд в газах.

Газоразрядными (ионными) называют электровакуумные приборы с электрическим разрядом в газе или парах. Газ в таких приборах находится под пониженным давлением. Электрический разряд в газе (в паре) это совокупность явлений, сопровождающих прохождение через него электрического тока. При таком разряде протекает несколько процессов.

Возбуждение атомов.

Под ударом электрона один из электронов атома газа переходит на более удаленную орбиту (на более высокий энергетический уровень). Такое возбужденное состояние атома длится 10 -7 – 10 -8 секунды, после чего электрон возвращается на нормальную орбиту, отдавая при этом в виде излучения полученную при ударе энергию. Излучение сопровождается свечением газа, если излучаемые лучи относятся к видимой части электромагнитного спектра. Для того, чтобы произошло возбуждение атома, ударяющий электрон должен иметь определенную энергию, так называемую энергию возбуждения.

Ионизация.

Ионизация атомов (или молекул) газа происходит при энергии ударяющего электрона большей, чем энергия возбуждения. В результате ионизации из атома выбивается электрон. Следовательно, в пространстве будут два свободных электрона, а сам атом превратится в положительный ион. Если эти два электрона при движении в ускоряющем поле наберут достаточную энергию, каждый из них может ионизировать новый атом. Свободных электронов будет уже четыре, а ионов – три. Происходит лавинообразное нарастание числа свободных электронов и ионов.

Возможна ступенчатая ионизация. От удара одного электрона атом переходит в возбужденное состояние и, не успев вернуться к нормальному состоянию, ионизируется от удара другого электрона. Увеличение в газе числа заряженных частиц за счет ионизации (свободных электронов и ионов) называют электризацией газа .

Рекомбинация.

Наряду с ионизацией в газе происходит и обратный процесс нейтрализации противоположных по знаку зарядов. Положительные ионы и электроны совершают в газе хаотическое движение, и приближаясь друг к другу могут соединиться, образуя нейтральный атом. Этому способствует взаимное притяжение разноименно заряженных частиц. Восстановление нейтральных атомов называют рекомбинацией . Так как на ионизацию затрачивается энергия, положительный ион и электрон в сумме имеют энергию большую, чем нейтральный атом. Поэтому рекомбинация сопровождается излучением энергии. Обычно при этом наблюдается свечение газа .

При возникновении электрического разряда в газе перевес имеет ионизация, при уменьшении его интенсивности – рекомбинация. При постоянной интенсивности электрического разряда в газе наблюдается установившийся режим, при котором число свободных электронов (и положительных ионов), возникающих за единицу времени вследствие ионизации в среднем равно числу нейтральных атомов, получающихся вследствие рекомбинации. С прекращением разряда ионизация исчезает и, вследствие рекомбинации, восстанавливается нейтральное состояние газа.

Для рекомбинации требуется некоторый отрезок времени, поэтому деионизация совершается за 10 -5 – 10 -3 секунд. Таким образом, по сравнению с электронными приборами, газоразрядные приборы значительно более инерционны.

Виды электрических разрядов в газах.

Различают самостоятельный и несамостоятельный разряды в газе. Самостоятельный разряд поддерживается под действием только электрического напряжения. Несамостоятельный разряд может существовать при условии, что помимо напряжения действуют еще какие-либо дополнительные факторы. Ими могут быть излучение света, радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и т.д.

Несамостоятельным является темный или тихий разряд . Свечение газа обычно незаметно. В газоразрядных приборах он практически не используется.

К самостоятельным относится тлеющий разряд. Для него характерно свечение газа, напоминающее свечение тлеющего угля. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов. К приборам тлеющего разряда относятся стабилитроны (газоразрядные стабилизаторы напряжения), газосветные лампы, тиратроны тлеющего разряда, знаковые индикаторные лампы и декатроны (газоразрядные счетные приборы).

Дуговой разряд может быть как несамостоятельным, так и самостоятельным. Дуговой разряд получается при плотности тока значительно большей, чем в тлеющем разряде и сопровождается интенсивным свечением газа. К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом. К приборам самостоятельного дугового разряда относятся ртутные вентили (экситроны) и игнитроны, имеющие жидкий ртутный катод, а также газовые разрядники.

Искровой разряд имеет сходство с дуговым разрядом. Он представляет собой кратковременный импульсный электрический разряд. Используется в разрядниках, служащих для кратковременного замыкания тех или иных цепей.

Высокочастотный разряд может возникать в газе под действием переменного электромагнитного поля даже при отсутствии токопроводящих электродов.

Коронный разряд является самостоятельным и используется в газоразрядных приборах для стабилизации напряжения. Наблюдается в случаях, когда один из электродов имеет очень малый радиус.

Явление статического электричества наблюдается обычно в диэлектриках. Если в диэлектрике химическая связь ионная, то из-за несовершенства структуры вещества количество положительных и отрицательных ионов в единице объема вещества не одинаково. Это означает, что практически любое диэлектрическое тело с ионной связью изначально обладает электрическим зарядом, вокруг которого существует электростатическое поле.

В реальных условиях этот заряд обычно компенсируется зарядами из окружающей среды, которые осаждаются на поверхности диэлектрика. В результате, электростатическое поле вокруг такого тела отсутствует.

Если в диэлектрике химическая связь ковалентная, то диэлектрик может обладать ненулевым электрическим дипольным моментом и, вследствие этого, создает вокруг себя электростатическое поле. В реальных условиях из окружающей среды на поверхности такого диэлектрика осаждаются компенсирующие заряды, таким образом, что электрическое поле вокруг такого тела становится равным нулю.

Механическое взаимодействие тел может приводить к снятию компенсирующих зарядов с соответствующих поверхностей и появлению в окружающем пространстве электрического поля, которое может наводить помехи на входах электрических устройств. Это электрическое поле в некоторых случаях может привести к пробою диэлектрика (например, воздуха).

Разряды, связанные с этим пробоем, формируют в пространстве электромагнитные импульсы, которые также передают помехи.

Полное внутреннее сопротивление источника от 1 до 30 кОм.

Суммарная индуктивность пути разряда 0,3 – 1,5 мкГн.

Емкость составляет от 100 до 300 пФ.

Максимальное напряжение до 15 кВ.

Максимальный ток импульса разряда до 30 А.

Скорость нарастания тока от 2 до 35 А/нс.

Примерная форма импульса тока при разряде электричества:

Примерная форма импульса тока Спектральная характеристика:

при разряде электричества:

Классификация источников помех

Различают функциональные источники и нефункциональные.

Функциональные источники – это радио- и телепередатчики, которые распространяют электромагнитные волны в окружающую среду в целях передачи информации. К этой группе относятся все устройства, которые излучают электромагнитные волны не для целей коммуникации, но для выполнения своей технической функции, например, генератор высокой частоты для промышленного или медицинского применения, микроволновые устройства радиоуправления.

К нефункциональным источникам относятся автомобильные устройства зажигания, люминесцентные лампы, сварочное оборудование, релейные и защитные катушки, выпрямители тока, контактные и бесконтактные переключатели, проводные линии и компоненты электрических узлов, переговорные устройства, атмосферные разряды, коронные разряды в линиях, коммутационные процессы, разряды статического электричества, быстро меняющиеся токи и напряжения в лабораториях техники высоких напряжений.

Различают также широкополосные и узкополосные источники помех.

Широкополосные – это помехи, обладающие широким частотным спектром, а узкополосные – узким.

В обычных условиях любой газ, будь то воздух или пары серебра, является изолятором. Для того, чтобы под действием электрического поля возник ток, требуется каким-то способом ионизировать молекулы газа. Внешние проявления и характеристики разрядов в газе чрезвычайно разнообразны, что объясняется широким диапазоном параметров и элементарных процессов, определяющих прохождения тока через газ. К первым относятся состав и давление газа, геометрическая конфигурация разрядного пространства, частота внешнего электрического поля, сила тока и т.п., ко вторым - ионизация и возбуждение атомов и молекул газа, рекомбинационные удары второго рода, упругое рассеяние носителей заряда, различные виды эмиссии электронов. Такое многообразие управляемых факторов создает предпосылки для весьма широкого применения газовых разрядов.

Потенциалом ионизации называется энергия, необходимая для отрыва электрона от атома или иона.

Фотоионизация атомов . Атомы могут ионизироваться при поглощении квантов света, энергия которых равна потенциалу ионизации атома или превосходит ее.

Поверхностная ионизация . Адсорбированный атом может покинуть нагретую поверхность как в атомном, так и в ионизованном состоянии. Для ионизации необходимо, чтобы работа выхода с поверхности была больше энергии ионизации уровня валентного электрона адсорбированного атома (щелочные металлы на вольфраме и платине).

Процессы ионизации используются не только для возбуждения различных видов газовых разрядов, но и для интенсификации различных химических реакций и для управления потоками газов с помощью электрических и магнитных полей.

А.С. N 444818: Способ нагрева стали в окислительной атмосфере, отличающийся тем, что с целью снижения обезуглероживания, в процессе нагрева используют ионизированные атмосферы.

А.С. 282684: Способ измерения малых потоков газа, выпускаемых в вакуумный объем, отличающийся тем, что с целью повышения точности измерения, газ перед запуском ионизируют и формируют в однородный полный пучок, а затем вводят ионный пучок в вакуумный объем, где его нейтрализуют на металлической мишени, и по току ионного пучка судят о величине газового потока.

Обычно газовый разряд происходит между проводящими электродами, создающими граничную конфигурацию электрического поля и играющими значительную роль в качестве источников и стоков заряженных частиц. Однако наличие электродов необязательно (высокочастотный тороидальный заряд).

При достаточно больших давлениях и длинах разрядного промежутка основную роль в возникновении и протекании разряда играет газовая среда. Поддержание разрядного тока определяется поддерживанием равновесной ионизации газа, происходящей при малых токах за счет процессов каскадной ионизации, а при больших токах - за счет термической ионизации.

При уменьшении давления газа и длины разрядного промежутка все большую роль играют процессы на электродах. При P =0,02..0,4 мм.рт.ст/см процессы на электродах становятся определяющими.

При малых разрядных токах между холодными электродами и достаточно однородном поле основным типом разряда является тлеющий разряд, характеризующийся значительным (50 – 400 В) катодным падением потенциала. Катод в этом типе разряда испускает электроны под действием заряженных частиц и световых квантов, а тепловые явления не играют роли в поддержании разряда.

Патент США 3 533 434: В устройстве, предназначенном для считывания информации с перфорированного носителя, используются лампы тлеющего разряда, имеющие невысокую стоимость, и, кроме того, обладающие высокой надежностью. Освещение ламп через перфорации носителя информации источником пульсирующего света вызывает зажигание некоторых из них, продолжающееся и после исчезновения светового импульса. Таким образом, лампы тлеющего разряда обеспечивают хранение информации и не требуют дополнительного запоминающего устройства.

Примесь молекулярных газов в разрядном промежутке при коронном разряде приводит к образованию страт, т.е. расположенных поперек градиента электрического поля темных и светлых полос.

Тлеющий разряд в сильно неоднородном электрическом поле и значительном (P> 100 мм.рт.ст.) давлении называют коронным. Ток коронного разряда имеет характер импульсов, вызываемых электронными лавинами. Частота появления импульсов 10-100 кГц.

Дуговой разряд наблюдается при силе тока не менее нескольких ампер. Для этого типа разряда характерно малое (до 10 В) катодное падение потенциала и высокая плотность тока. Для дугового разряда существенна высокая электронная эмиссия катода и термическая ионизация в плазменном столбе. Спектр дуги обычно содержит линии материала катода.

А.с. 226 729: Способ выпрямления переменного тока с помощью газоразрядного промежутка с полым катодом при низком давлении газа, соответствующим области левой ветви кривой Пашена, отличающийся тем, что с целью повышения выпрямленного тока и уменьшения падения напряжения в течении проводящей части периода, при положительном потенциале на аноде систему "анод - полый катод" переводить в режим дугового разряда.

Искровой разряд начинается с образования стример - самораспространяющихся электронных лавин, образующих проводящий канал между электродами. Вторая стадия искрового разряда - главный разряд - происходит вдоль канала, образованного стримером, а по своим характеристикам близка к дуговому разряду, ограниченному во времени емкостью электродов и недостаточностью питания. При давлении 1 атм. материал и состояние электродов не оказывает влияния на пробивное напряжение в этом виде разряда.

Расстояние между сферическими электродами, соответствующее возникновению искрового пробоя, весьма часто служит для измерения высокого напряжения.

А.с. 272 663: Способ определения размера макрочастиц с подачей их на заряженную поверхность, отличающийся тем, что с целью повышения точности измерения, определяют интенсивность световой вспышки, сопровождающей электрический пробой между заряженной поверхностью и приближающейся к ней частицей, и по интенсивности судят о размере частицы.

Факельный разряд - особый вид высокочастотного одноэлектродного разряда. При давлениях, близких к атмосферному или выше его, факельный разряд имеет форму пламени свечи. Этот вид разряда может существовать при частотах 10 МГц, при достаточной мощности источника.

При изучении заряженного острия наблюдается интересный эффект - так называемое стекание зарядов с острия. В действительности никакого стекания нет. Механизм этого явления следующий: имеющиеся в воздухе в небольшом количестве свободные заряды вблизи острия разгоняются и, ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов создает впечатление стекания зарядов. При этом острие разряжается, и одновременно получает импульс, направленный против острия.

Несколько примеров на применение коронного разряда:

А.с. 485 282: Устройство для кондиционирования воздуха, содержащее корпус с поддоном и патрубками для подвода и отвода воздуха и размещенный в корпусе теплообменник с каналами, орошаемыми со стороны одного из потоков, отличающийся тем, что, с целью повышения степени охлаждения воздуха путем интенсификации испарения коронирующие воды, по оси орошаемых каналов теплообменника установлены электроды, прикрепленные к имеющему заземление корпусу с помощью изоляторов и подключенные к отрицательному полюсу источника напряжения.

А.С. 744429: Измеритель диаметра проволоки тоньше пятидесяти микрон с помощью коронного разряда. Как известно, коронный разряд в виде светящегося кольца возникает вокруг проводника, если к проводнику приложить высокое напряжение. При определении сечения проводника коронный разряд будет иметь вполне определенные характеристики. Стоит изменить сечение, тотчас изменяется и характеристика коронного разряда.

Разряд электрический* - Потеря электричества каким-либо наэлектризованным телом, т. е. Разряд электрический* этого тела, может происходить различными способами, вследствие чего и явления, сопровождающие Разряд электрический*, могут получаться по характеру весьма неодинаковые. Все разнообразные формы Разряд электрический* можно подразделить на три главнейших вида: Разряд электрический* в виде электрического тока, или Разряд электрический* проводящий, Разряд электрический* конвекционный и Разряд электрический* разрывной. Разряд электрический* в виде тока происходит тогда, когда наэлектризованное тело соединяется с землей или с другим телом, обладающим м, равным по количеству и противоположным по знаку с электричеством на разряжающемся теле, при посредстве проводников или даже изоляторов, но изоляторов, у которых покрыта слоем, проводящим электричество, напр. поверхность смочена или загрязнена. В этих случаях происходит полный Разряд электрический* данного тела, причем продолжительность этого Разряд электрический* обусловливается м и формой (см. ) проводников, чрез которые происходит Разряд электрический* Чем меньше сопротивление и самоиндукции проводников, тем быстрее происходит Разряд электрический* тела. Тело разряжается отчасти, т. е. его Разряд электрический* происходит неполный, когда оно соединяется проводниками с каким-либо другим телом, не наэлектризованным или наэлектризованным слабее, чем оно. В этих случаях тем большая часть электричества теряется телом, чем больше емкость того тела, которое присоединяется к нему при помощи проводников. Явления, сопровождающие Разряд электрический* в виде тока, качественно одинаковы с явлениями, которые вызываются электрическим током, возбуждаемым обыкновенными гальваническими элементами. Разряд электрический* конвенционный происходит в том случае, когда хорошо изолированное тело находится в среде жидкой или газообразной, содержащей в себе частицы, способные электризоваться и под влиянием электрических сил способные двигаться в этой среде. Разряд электрический* разрывной - это Разряд электрический* тела или в землю, или в другое тело, противоположно наэлектризованное, через среду, не проводящую электричество. Явление происходит так, как будто непроводящая среда уступает действию тех натяжений, которые возникают в ней под влиянием электризации тела, и предоставляет путь электричеству. Такой разрывной Разряд электрический* всегда сопровождается световыми явлениями и может происходить в различных формах. Но все эти формы разрывного Разряд электрический* можно подразделить на три категории: Разряд электрический* при помощи искры, Разряд электрический* при помощи кисти, Разряд электрический* сопровождающийся сиянием, или тихий P. Все эти Разряд электрический* имеют между собой сходство в том отношении, что, несмотря на малую продолжительность, каждый из них представляет совокупность нескольких Разряд электрический*, т. е. при этих Разряд электрический* тело теряет свое электричество не непрерывно, а перемежающимся образом. Разряд электрический* при помощи искры является в большинстве случаев колебательным (см. Колебательный Разряд электрический*). Разряд электрический* при помощи искры образуется тогда, когда к наэлектризованному телу, находящемуся в каком-либо газе немалой упругости или в жидкости, приближено достаточно близко другое тело, проводящее электричество и соединенное с землей или же наэлектризованное противоположно данному телу. Искра может образоваться и тогда, когда между такими двумя телами будет находиться слой какого-либо твердого изолятора. В этом случае искра пробивает этот слой, образуя в нем сквозное отверстие и трещины. Искра сопровождается всегда особым треском, происходящим от быстрого потрясения той среды, в которой она получается. Когда искра коротка, она имеет вид светлой прямолинейной черты. Толщина этой черты обусловливается м электричества, которое теряется наэлектризованным телом при помощи этой искры. По мере увеличения длины искры она становится тоньше и вместе с тем отклоняется от вида прямолинейной черты, принимает форму зигзагообразной линии, а затем, при дальнейшем удлинении, разветвляется и, наконец, переходит в форму кисти (табл., фиг. 1). При помощи вращающегося зеркала можно обнаружить, что появляющаяся искра состоит в действительности из целого ряда отдельных искорок, следующих одна за другой через некоторый времени. Длина образующейся искры, или так называемое разрядное расстояние, зависит от разности потенциалов тех тел, между которыми получается эта искра. Однако и при одной и той же разности потенциалов двух тел длина образующейся между ними искры изменяется несколько в зависимости от формы этих тел. Так, при данной разности потенциалов искра получается длиннее, когда она образуется между двумя дисками, чем в том случае, когда она должна проскочить между двумя шарами. Да и для различных шаров искра не одинаковой длины. Она тем длиннее, чем больше разнятся друг от друга по размерам два шара. При данной разности потенциалов получается наиболее короткая искра, т. е. получается наименьшее разрядное расстояние, в том случае, когда искра должна получиться между двумя шарами одинаковых размеров. Изменение упругости газа оказывает весьма большое влияние на величину разности потенциалов, необходимой для образования искры данной длины. С уменьшением упругости газа эта разность потенциалов также уменьшается. газа, в котором является искра, оказывает немалое влияние на величину необходимой разности потенциалов. При одной и той же длине искры и при одной и той же упругости газа эта разность потенциалов - наименьшая для водорода, она больше для воздуха и еще больше для угольной кислоты. Для получения искры в жидкости требуется разность потенциалов большая, чем для получения такой же искры в газе. Вещество тел, между которыми образуется искра, оказывает весьма малое влияние на разность потенциалов, нужную для возникновения искры. При малых длинах искры в воздухе или в другом каком-либо газе образующая искру разность потенциалов весьма близко пропорциональна длине искры. При больших длинах искры связь между длиною искры и необходимой для этого разностью потенциалов не так проста. В этом случае при возрастании разности потенциалов длина искры увеличивается быстре увеличения разности потенциалов. В следующей таблице содержатся данные для выражения длины искр и соответствующих им разностей потенциалов (искры образуются между двумя дисками, у одного поверхность мало выпуклая).

Длина искры, в стм

Разность потенциалов, в вольтах

РАЗРЯД ЭЛЕКТРИЧЕСКИЙ.